if A is any square matrix.show that A+A' is symmetric
Answers
Answered by
0
Step-by-step explanation:
Let P = A'A
∴ P'= (A'A)'
= A'(A')' [∵ (AB)' = B'A']
So, A'A is symmetrice matrix for any matrix A.
Now, let Q = AA'
∴ Q' = (AA')' = (A')'(A)' = AA' = Q
So, AA' is symmetric matrix for any matrix A.
Answered by
0
Answer:
this my answer
Step-by-step explanation:
dnaK9£847362)£-!£(_+_(7#÷|=|{$π[$=¢{$×{|\\\\}$=•{|÷|{{|]|=${$=$×$¶¢}•
Attachments:
Similar questions