Math, asked by vigneshm9666gmailcom, 1 year ago

if a is equal to 2 minus root 5 divided by 2 + root 5 is equal to 2 + root 5 divided by 2 minus root 5 then find the value of a square minus b square

Attachments:

Answers

Answered by Ayush2356
15
on solving it further
= (-18/1)(8√5/1)
= -144√5
Attachments:
Answered by presentmoment
4

a^2-b^2=-144 \sqrt{5}

Step-by-step explanation:

Given data:

$a=\frac{2-\sqrt{5} }{2+\sqrt{5} } , \  \ b=\frac{2+\sqrt{5} }{2-\sqrt{5} }

To find a² - b²:

$a^2-b^2=\left(\frac{2-\sqrt{5}}{2+\sqrt{5}}\right)^2-\left(\frac{2+\sqrt{5}}{2-\sqrt{5}}\right)^2

           $=\frac{(2-\sqrt{5} )^2}{(2+\sqrt{5} )^2} -\frac{(2+\sqrt{5} )^2}{(2-\sqrt{5} )^2}

Using identity: (a+b)^2=a^2+2ab+b^2 and (a-b)^2=a^2-2ab+b^2

If we expand using the identity, we get

          $=\frac{9-4 \sqrt{5}}{9+4 \sqrt{5}}-\frac{9+4 \sqrt{5}}{9-4 \sqrt{5}}  

To make the denominator same, multiply and divide by common factor.

         $=\frac{(9-4 \sqrt{5})^{2}}{(9+4 \sqrt{5})(9-4 \sqrt{5})}-\frac{(9+4 \sqrt{5})^{2}}{(9+4 \sqrt{5})(9-4 \sqrt{5})}      

        $=\frac{-144 \sqrt{5}}{1}

a^2-b^2=-144 \sqrt{5}

To learn more...

1. if a is equal to 2 minus root 5 divided by 2 + root 5 is equal to 2 + root 5 divided by 2 minus root 5 then find the value of a square minus b square

https://brainly.in/question/2575674

2. If 3 divided by 4 square root 5 minus root 3 + 2 / 4 square root 5 + root 3 is equal to a square root 5 + b square root 3 then find the value of a and b

https://brainly.in/question/3525129

Similar questions