Math, asked by diku23, 1 year ago

if a is equals to root 6 + root 5 and b is equals to root 6 minus root 5 then find the value of 2 a square minus 5 ab + 2 b square​

Answers

Answered by skh2
35

a = \sqrt{6} + \sqrt{5} \\  \\  \\b = \sqrt{6} -  \sqrt{5}

Now,

a - b =  \sqrt{6} +  \sqrt{5}- \sqrt{6} + \sqrt{5} \\  \\  \\  \\ = 2 \sqrt{5}

Now,

ab = ( \sqrt{6} + \sqrt{5})( \sqrt{6} -  \sqrt{5}) \\  \\  \\ =6 - 5 \\  \\  \\ = 1

\rule{200}{2}

Now ,

2 {a}^{2} - 5ab + 2 {b}^{2} \\  \\  \\ = 2 {a}^{2}- 4ab + 2 {b}^{2}- ab \\  \\  \\ =2( {a}^{2} - 2ab + {b}^{2})-ab \\  \\  \\ = 2 {(a - b)}^{2}-ab \\  \\  \\

Now,

Putting down the values :-

2 {(2 \sqrt{5})}^{2} - 1 \\  \\  \\ = 2 \times 20- 1 \\  \\  \\ = 40-1 \\  \\  \\ = 39

 \rule{200}{2}

Hence ,

The answer is 39

\rule{200}{2}


diku23: hey thank you so much but the options for the answer are 36, 37, 39 and 41 :-(.....
diku23: plz help
skh2: yes!
skh2: The correct answer is 39
diku23: thank you sooooooooo much for your time ❣
skh2: ^_^
Answered by Anonymous
28

Solution :

If,

a = √6 + √5

b = √6 - √5

Now, for finding the value of (a + b)

(a - b) = √6 + √5 - √6 + √5

=> (a - b) = 2√5

.°. (a - b) = 2√5

Now, for finding the value of (ab)

(ab) = (√6 + √5) ( √6 - √5)

[°.° a - b = (a + b)(a - b)]

=> (ab) = 6 - 5

=> (ab) = 1

.°. (ab) = 1

Now,

2a^2 - 5ab + 2b^2

= 2a^2 - 4ab - ab + 2b^2

= 2a^2 - 4ab + 2b^2 - ab

= 2(a^2 - 2ab + b^2) - ab

[°.° (a - b)^2 = a^2 - 2ab + b^2]

= 2(a - b)^2 - ab

Now, putting the value of (a + b).

2(2√5)^2 - 1

= 2 × 20 - 1

= 40 - 1

= 39

.°. 2(a - b)^2 - ab = 39

Answer : 39

Similar questions