Math, asked by abiramasundari062, 1 month ago

If A is hermitian then iA is skew hermitian

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:A \: is \: hermitian \: matrix.

We know,

A square matrix A is said to be Hermitian iff

\rm :\longmapsto\:\boxed{ \tt{ \:  {A}^{\theta } = A \: }}

and

A square matrix A is said to be skew - hermitian iff

\rm :\longmapsto\:\boxed{ \tt{ \:  {A}^{\theta } \:  =   \: -  \: A \: }}

It is given that

\rm :\longmapsto\:A \: is \: hermitian \: matrix.

\rm :\longmapsto\:\boxed{ \tt{ \:  {A}^{\theta } = A \: }}

Now, Consider

\rm :\longmapsto\: {(iA)}^{\theta }

We know,

\boxed{ \tt{ \:  \overline{i} =  -  \: i \: }}

So, using this, we get

\rm \:  =  \:  -  \: i \:  {A}^{\theta }

\rm \:  =  \:  -  \: i \:  A

\rm \implies\: {(iA)}^{\theta } \:  =  \:  -  \: i \: A

\bf\implies \:iA \: is \: skew - hermitian

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

1. If A is hermitian, then main diagonal entries are purely real

2. If A is skew - hermitian matrix, then main diagonal entries are purely imaginary.

Answered by XxitsmrseenuxX
1

Answer:

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:A \: is \: hermitian \: matrix.

We know,

A square matrix A is said to be Hermitian iff

\rm :\longmapsto\:\boxed{ \tt{ \:  {A}^{\theta } = A \: }}

and

A square matrix A is said to be skew - hermitian iff

\rm :\longmapsto\:\boxed{ \tt{ \:  {A}^{\theta } \:  =   \: -  \: A \: }}

It is given that

\rm :\longmapsto\:A \: is \: hermitian \: matrix.

\rm :\longmapsto\:\boxed{ \tt{ \:  {A}^{\theta } = A \: }}

Now, Consider

\rm :\longmapsto\: {(iA)}^{\theta }

We know,

\boxed{ \tt{ \:  \overline{i} =  -  \: i \: }}

So, using this, we get

\rm \:  =  \:  -  \: i \:  {A}^{\theta }

\rm \:  =  \:  -  \: i \:  A

\rm \implies\: {(iA)}^{\theta } \:  =  \:  -  \: i \: A

\bf\implies \:iA \: is \: skew - hermitian

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

1. If A is hermitian, then main diagonal entries are purely real

2. If A is skew - hermitian matrix, then main diagonal entries are purely imaginary.

Similar questions