Math, asked by aman6229, 8 months ago

If A
is Involuntary matrix then
1/2 ( I + A ) is .. ( with fully solved solution)

1) Idenpoilent Matrix
2) Nilpolent Matrix
3) Periodic matrix
4) involutary matrix

Answers

Answered by MaheswariS
21

\textbf{Given:}

\textsf{A is Involutory matrix}

\textbf{To find:}

\mathsf{Type\;of\;the\;matrix\;\dfrac{1}{2}(I+A)}

\textbf{Solution:}

\textbf{Concept used:}

\textbf{A square matrix A is said to Involutory if}\;\mathsf{A^2=I}

\textbf{A square matrix A is said to Idempotent if}\;\;\mathrm{A^2=A}

\textsf{Since A is involutory,}\;\;\mathrm{A^2=I}

\textsf{Consider,}

\mathsf{\dfrac{1}{2}(I+A){\times}\dfrac{1}{2}(I+A)}

\mathsf{=\dfrac{1}{4}(I+A)^2}

\mathsf{=\dfrac{1}{4}(I^2+A^2+2\,A\,I)}

\mathsf{=\dfrac{1}{4}(I+I+2\,A\,I)}

\mathsf{=\dfrac{1}{4}(2I+2\,A\,I)}

\mathsf{=\dfrac{1}{4}{\times}2(I+A\,I)}

\mathsf{=\dfrac{1}{2}(I+A)}

\mathsf{\dfrac{1}{2}(I+A){\times}\dfrac{1}{2}(I+A)=\dfrac{1}{2}(I+A)}

\therefore\textsf{A is idempotent}

\textbf{Answer:}

\textsf{Option (1) is correct}

Answered by namanbehari029
0

Answer:

Step-by-step explanation:

534

Similar questions