Math, asked by romasevkani2484, 10 months ago

If a is not equal to 0 and a -1 by a =3 find (1) a square+1 by a square(2) a qube -1 by a qube

Answers

Answered by Abhishek474241
2

Taking a=X

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

\tt{a\neq{0}}\\{X-\dfrac{1}{X}=3}

{\sf{\green{\underline{\large{To\:find}}}}}

\tt{(1)X^2+\frac{1}{x^2}}\\(2){X^3-\dfrac{1}{X^3}}

{\sf{\pink{\underline{\Large{Explanation}}}}}

We know that

\boxed{\boxed{\sf\red{(a-b)^2=a^2+b^2-2ab}}}

Therefore

\tt{(X-\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}-2\frac{1}{X}\times{X}}

Solving

\tt{X-\dfrac{1}{X}=3}

Both side squaring

\tt{(X-\dfrac{1}{X})^2}=(3)²

\implies\tt{(X-\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}-2\frac{1}{X}\times{X}}=9

\implies\tt{9=X^2+\dfrac{1}{X^2}-2\frac{1}{X}\times{X}}

\implies\tt{9=X^2+\dfrac{1}{X^2}-2}

\implies\tt{9+2=X^2+\dfrac{1}{X^2}}

\implies\tt{11=X^2+\dfrac{1}{X^2}}

Now

\tt{X^3+\dfrac{1}{X^3}}

Formula used

\implies\tt{X^3-\dfrac{1}{X^3)}=(X-\dfrac{1}{x})(X^2+\dfrac{1}{X^2}+\frac{1}{X}\times{X)}}

utting value

\implies\tt{X^3-\dfrac{1}{X^3}=3+11+1}

\implies\tt{X^3-\dfrac{1}{X^3}=15}

\implies\tt{X^3-\dfrac{1}{X^3}=15}

Similar questions