If a is not equal to b and b is not equal to c . prove that (a,a2) , (b,b2) and (c,c2) can never be collinear
Answers
Answered by
6
Please check the attachment.
Mark as brainliest plzz
Mark as brainliest plzz
Attachments:
Answered by
4
(a , a² ) , (b , b²) & (c , c²) can not be collinear if a≠b b≠c and a≠c
Step-by-step explanation:
a≠b b≠c and a≠c
(a , a² ) , (b , b²) & (c , c²) are collinear if
area = 0
iff Area = (1/2) | a( b² - c²) + b(c² - a²) + c(a² - b²)| = 0
iff a( b² - c²) + b(c² - a²) + c(a² - b²) = 0
iff a(b + c)(b - c) +bc² - ba² + ca² - cb² = 0
iff (ab + ac)(b - c) - bc(b - c) -a²(b - c) = 0
iff (b - c) ( ab + ac - bc - a²) = 0
iff (b - c) (a(b - a) - c(b - a)) = 0
iff (b - c)(a - c)(b - a) = 0
iff either a = b or a = c or b = c
but given that a≠b b≠c and a≠c
hence (a , a² ) , (b , b²) & (c , c²) can not be collinear if a≠b b≠c and a≠c
Learn more:
Points X, Y, Z are collinear such that d(X,Y)=17, d(Y,Z)
https://brainly.in/question/4555492
Collinear points by trigonometry value are A
https://brainly.in/question/8431774
Similar questions
English,
7 months ago
Math,
7 months ago
Computer Science,
7 months ago
Physics,
1 year ago
Math,
1 year ago