Math, asked by sayyadaifrah, 10 months ago

if a is not in second quadrant and b is not in3rd quadrant and cosa=-1/2 and cosB = -1/2 then 4sinB -3tana/ tanB + sin a=?​

Answers

Answered by mysticd
1

 i) It \: is \: given \: that \: \angle A \:is \:not \:in

 Q_{2} \: So \: it \: lies \: in \: Q_{3}

 In \: \triangle OQR ,

 Cos A = \frac{-1}{2}

/* By Phythagorean theorem */

 OQ^{2} + QR^{2} = OR^{2}

 \implies (-1)^{2} + QR^{2} = 2^{2}

 \implies 1 + QR^{2} = 4

 \implies QR^{2} = 4 - 1

 \implies QR = \sqrt{3}\: --(1)

 ii) It \: is \: given \: that \: \angle B \:is \:not \:in

 Q_{3} \: So \: it \: lies \: in \: Q_{2}

 In \: \triangle OQP ,

 Cos B = \frac{-1}{2}

/* By Phythagorean theorem */

 OQ^{2} + QP^{2} = OP^{2}

 \implies (-1)^{2} + QP^{2} = 2^{2}

 \implies 1 + QP^{2} = 4

 \implies QP^{2} = 4 - 1

 \implies QP = \sqrt{3}\: --(2)

 Now, sin B = \frac{PQ}{OP} = \frac{\sqrt{3}}{2}

 tan A = \frac{QR}{OQ} = \frac{\sqrt{3}}{(-1)}

 tan B = \frac{PQ}{OQ} = \frac{\sqrt{3}}{(-1)}

 Now, sin A = \frac{QR}{OR} = \frac{\sqrt{3}}{2}

 \red{ Value \: of \: 4Sin B - \frac{3 tan A}{tan B} + sin A }

 = 4 \times \frac{\sqrt{3}}{2} - 3\Big( \frac{\frac{\sqrt{3}}{(-1)}}{\frac{\sqrt{3}}{(-1)}}\Big) + \frac{\sqrt{3}}{2}

 = 2\sqrt{3} - 3 + \frac{\sqrt{3}}{2}

 = \frac{ 4\sqrt{3} - 6 + \sqrt{3}}{2}

 = \frac{5\sqrt{3} - 6}{2}

Therefore.,

 \red{ Value \: of \: 4Sin B - \frac{3 tan A}{tan B} + sin A }

 \green{=\frac{5\sqrt{3} - 6}{2}}

•••♪

Attachments:
Similar questions