Math, asked by susanshibu2004, 8 months ago

if a is
5 + 2 \sqrt{6}  \: then \: find \: the \: value \: of \:  \:  a +  \frac{1}{a}

Answers

Answered by Anonymous
1

Step-by-step explanation:

solution:-

a = 5 + 2 \sqrt{6}

we have find

a +  \frac{1}{a}  \\

so value of a is given then put the value of a

5 + 2 \sqrt{6}  +  \frac{1}{5 + 2 \sqrt{6} }  \\

now take a lcm

 \frac{(5 + 2 \sqrt{6} )(5 + 2 \sqrt{6}) + 1 }{5 + 2 \sqrt{6} }  \\  \frac{(5 + 2 \sqrt{6} ) { }^{2}  + 1}{5 + 2 \sqrt{6} }  \\  \frac{5 {}^{2} + (2 \sqrt{6} ) {}^{2}   + 5 \times 2 \times 2 \sqrt{6}  + 1}{5 + 2 \sqrt{6} }  \\  \frac{25 + 24 + 20 \sqrt{6}  + 1}{5 + 2 \sqrt{6} }  \\  \frac{50 + 20 \sqrt{6} }{5 + 2 \sqrt{6} }  \\

take 10 common from nominator

 \frac{10 (5 + 2 \sqrt{6} )}{5 + 2 \sqrt{6} }  \\ 5 + 2 \sqrt{6}  \: is \: same \: so \: it \: cancle \: out \\ \implies10

ANSWER:- 10

Similar questions