Math, asked by tapan8apa2tapr, 1 year ago

If A is the A.M 's between a and b,prove that 4(a-A)(A-b)=(b-a)^2

Answers

Answered by ARoy
54
A is the arithmatic mean of a and b. Then,
(a+b)/2=A
∴, 4(a-A)(A-b)
=4{a-(a+b)/2}{(a+b)/2-b}
=4{(2a-a-b)/2}{(a+b-2b)/2}
=4{(a-b)(a-b)/4}
={-(b-a)}{-(b-a)}
=(b-a)² (Proved)
Answered by amirgraveiens
16

Hence proved.

Step-by-step explanation:

Given:

4(a-A)(A-b)=(b-a)^2

Here A is the arithmetic mean between a and b

⇒ A = \frac{a+b}{2}

LHS = 4(a−A)(A−b)

= 4[a-(\frac{a+b}{2} )][(\frac{a+b}{2} )-b]

= 4[\frac{2a-(a+b)}{2} ][\frac{a+b-2b}{2} ]

= 4(\frac{2a-a-b}{2})(\frac{a-b}2} )

= 4(\frac{a-b}{2} )(\frac{a-b}{2} )

= 4(\frac{a-b}{2} )^2

= 4\times\frac{(a-b)^2}{4}

= (a-b)^2

= (-b+a)^2

= [-(b-a)]^2          [(-(b-a))^2=(-b+a)^2]

= (b-a)^2

= RHS.

Hence proved.

                   

Similar questions