Math, asked by aman399881, 7 months ago

 If a kite is flying at a height of 40√3m from the level ground, attached to a string inclined at 60 degree to the horizontal, then the length of the string is​

Answers

Answered by SarcasticL0ve
28

ANSWER:

\setlength{\unitlength}{25} \begin{picture}(5,5) \linethickness{1}\put(1,1){\line(1,0){3}} \put(4,1){\line(0,1){4}}\qbezier(1,1)(1,1)(4,5)\qbezier(1.7,1)(1.7,1.4)(1.5,1.6)\put(3.7,1){\line(0,1){0.3}}\put(3.7,1.3){\line(1,0){0.3}}\put(3.9,5.1){$ \bf C$}\put(3.9,0.5){$ \bf B$}\put(0.8,0.5){$ \bf A $}\put(1.8,1.25){$ \bf {60}^{ \circ} $}\put(4.2,3){$ \bf 40 \sqrt{3}\: m$}\put(1.7,3){$ \bf x $}\end{picture}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Here,

\;\;\;\bullet\;\; Height of kite from ground is 40√3 m.

\;\;\;\bullet\;\; Let Height of string attached with kite be x.

\;\;\;\bullet\;\; Angle of elevation = 60°

\\

★ In ∆ABC,

\\

\star\;\sf sin\;60^\circ = \dfrac{BC}{AC} = \dfrac{P}{H}\\ \\

:\implies\sf \dfrac{ \sqrt{3}}{2} = \dfrac{40\sqrt{3}}{x}\\ \\

:\implies\sf \sqrt{3} x = 40 \sqrt{3} \times 2\\ \\

:\implies\sf \sqrt{3} x = 80 \sqrt{3}\\ \\

:\implies\sf x = \dfrac{80 \cancel{\sqrt{3}}}{ \cancel{ \sqrt{3}}}\\ \\

:\implies{\underline{\boxed{\sf{\pink{x = 80\;m}}}}}\;\bigstar\\ \\

\therefore\; {\underline{\sf{Hence,\;the\; length\;of\;string\;is\; \bf{100\;m}}}}

Answered by Anonymous
29

Given:-

Height = 40√3m

Angle of elevation = 60°

To find:-

Length of the string.

Answer:-

Let the length of the string be 'x'.

In triangle ABC,

\tt{sin \: 60 =  \frac{Perpendiular}{Height}   =  \frac{AC}{AB}}

\tt {\frac{ \sqrt{3} }{2} =  \frac{40 \sqrt{3} }{x}}

\tt {\sqrt{3}x = 40 \sqrt{3}  \times 2} [by cross - multipying on both sides]

\tt {x = 40 \times 2} [since, √3 on both sides get cancelled]

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \large\boxed{x = 80m}

Therefore, Length of the string is 80m.

Attachments:
Similar questions