Math, asked by Sanchit1912, 3 days ago

if a length of rectangle is decreased by 2cm and breadth is increased by 2cm then the area id increased by 20cm² . if the length is increased by 1cm and breadth is decreased by 2cm then the area is reduced by 38cm² . find the length and breadth of rectangle​

Answers

Answered by khushisharma4508
1

Answer:

hope it's helpful marks me at brainlist

Step-by-step explanation:

Let the length of the rectangle be x units and the breadth be y units.

Let the length of the rectangle be x units and the breadth be y units.Area of the rectangle=length×breadth

Let the length of the rectangle be x units and the breadth be y units.Area of the rectangle=length×breadth=x×y=xy sq. units

Let the length of the rectangle be x units and the breadth be y units.Area of the rectangle=length×breadth=x×y=xy sq. unitsFrom the given information, we have,

Let the length of the rectangle be x units and the breadth be y units.Area of the rectangle=length×breadth=x×y=xy sq. unitsFrom the given information, we have,(x+2)×(y−2)=xy−28and(x−1)×(y+2)=xy+33(x+2)×(y−2)=xy−28=>xy−2x+2y−4=xy−28=>−2x+2y=−24=>−x+y=−12=>x=y+12....(i)Also,(x−1)×(y+2)=xy+33=>xy+2x−y−2=xy+33=>2x−y=35....(ii)

Let the length of the rectangle be x units and the breadth be y units.Area of the rectangle=length×breadth=x×y=xy sq. unitsFrom the given information, we have,(x+2)×(y−2)=xy−28and(x−1)×(y+2)=xy+33(x+2)×(y−2)=xy−28=>xy−2x+2y−4=xy−28=>−2x+2y=−24=>−x+y=−12=>x=y+12....(i)Also,(x−1)×(y+2)=xy+33=>xy+2x−y−2=xy+33=>2x−y=35....(ii)Substituting equation (i) in equation (ii), we get,

Let the length of the rectangle be x units and the breadth be y units.Area of the rectangle=length×breadth=x×y=xy sq. unitsFrom the given information, we have,(x+2)×(y−2)=xy−28and(x−1)×(y+2)=xy+33(x+2)×(y−2)=xy−28=>xy−2x+2y−4=xy−28=>−2x+2y=−24=>−x+y=−12=>x=y+12....(i)Also,(x−1)×(y+2)=xy+33=>xy+2x−y−2=xy+33=>2x−y=35....(ii)Substituting equation (i) in equation (ii), we get,2x−y=35=>2(y+12)−y=35=>2y+24−y=35=>y=11

Let the length of the rectangle be x units and the breadth be y units.Area of the rectangle=length×breadth=x×y=xy sq. unitsFrom the given information, we have,(x+2)×(y−2)=xy−28and(x−1)×(y+2)=xy+33(x+2)×(y−2)=xy−28=>xy−2x+2y−4=xy−28=>−2x+2y=−24=>−x+y=−12=>x=y+12....(i)Also,(x−1)×(y+2)=xy+33=>xy+2x−y−2=xy+33=>2x−y=35....(ii)Substituting equation (i) in equation (ii), we get,2x−y=35=>2(y+12)−y=35=>2y+24−y=35=>y=11Substituting y=11 in equation (i), we get,

Let the length of the rectangle be x units and the breadth be y units.Area of the rectangle=length×breadth=x×y=xy sq. unitsFrom the given information, we have,(x+2)×(y−2)=xy−28and(x−1)×(y+2)=xy+33(x+2)×(y−2)=xy−28=>xy−2x+2y−4=xy−28=>−2x+2y=−24=>−x+y=−12=>x=y+12....(i)Also,(x−1)×(y+2)=xy+33=>xy+2x−y−2=xy+33=>2x−y=35....(ii)Substituting equation (i) in equation (ii), we get,2x−y=35=>2(y+12)−y=35=>2y+24−y=35=>y=11Substituting y=11 in equation (i), we get,x=y+12=>x=11+12=>x=23

Let the length of the rectangle be x units and the breadth be y units.Area of the rectangle=length×breadth=x×y=xy sq. unitsFrom the given information, we have,(x+2)×(y−2)=xy−28and(x−1)×(y+2)=xy+33(x+2)×(y−2)=xy−28=>xy−2x+2y−4=xy−28=>−2x+2y=−24=>−x+y=−12=>x=y+12....(i)Also,(x−1)×(y+2)=xy+33=>xy+2x−y−2=xy+33=>2x−y=35....(ii)Substituting equation (i) in equation (ii), we get,2x−y=35=>2(y+12)−y=35=>2y+24−y=35=>y=11Substituting y=11 in equation (i), we get,x=y+12=>x=11+12=>x=23Therefore, length of rectangle =x=23 units

Let the length of the rectangle be x units and the breadth be y units.Area of the rectangle=length×breadth=x×y=xy sq. unitsFrom the given information, we have,(x+2)×(y−2)=xy−28and(x−1)×(y+2)=xy+33(x+2)×(y−2)=xy−28=>xy−2x+2y−4=xy−28=>−2x+2y=−24=>−x+y=−12=>x=y+12....(i)Also,(x−1)×(y+2)=xy+33=>xy+2x−y−2=xy+33=>2x−y=35....(ii)Substituting equation (i) in equation (ii), we get,2x−y=35=>2(y+12)−y=35=>2y+24−y=35=>y=11Substituting y=11 in equation (i), we get,x=y+12=>x=11+12=>x=23Therefore, length of rectangle =x=23 unitsand breadth of rectangle 

Answered by shreyanshdonge007
0

Answer:

Let,

Length of the rectangle = x

Breadth of the rectangle = y

Area = xy

According to the first condition,

According to the second condition,

Add eq (2) and eq (1),

Substitute the value of x in eq (1),

Length of original rectangle = 23 cm

Breadth of original rectangle = 11 cm

Step-by-step explanation:

Similar questions