Math, asked by Debidutta1374, 11 months ago

If a line has direction ratios 2: 1: 2 then what are its direction Cousins

Answers

Answered by amikkr
0

Direction cosines are 2/3,1/3,2/3.

  • The direction ratios are given as 2 : 1 : 2.
  • The direction ratios will be 2x,x and 2x. (As the direction ratios are given in ratio form , x is the common multiple)
  • Now let us consider the direction ratios as a,b,c.
  • Then the direction cosines are determined as \frac{a}{\sqrt{a^{2}+b^{2}+c^{2} } },\frac{b}{\sqrt{a^{2}+b^{2}+c^{2} } } and \frac{c}{\sqrt{a^{2}+b^{2}+c^{2} } }.
  • Determining the direction cosines we get,

\frac{2x}{\sqrt{{2x}^{2}+x^{2}+{2x}^{2} } } = \frac{2x}{\sqrt{4x^{2}+x^{2}+4x^2 } } = \frac{2x}{\sqrt{9x^2 } = \frac{2}{3}

Similarly,

\frac{x}{\sqrt{{2x}^{2}+x^{2}+{2x}^{2} } } \frac{x}{\sqrt{4x^{2}+x^{2}+4x^2 } } = \frac{x}{\sqrt{9x^2 } = \frac{1}{3}

\frac{2x}{\sqrt{{2x}^{2}+x^{2}+{2x}^{2} } } \frac{2x}{\sqrt{4x^{2}+x^{2}+4x^2 } } = \frac{2x}{\sqrt{9x^2 } = \frac{2}{3}

  • Therefore the direction cosines are 2/3,1/3.2/3.
Similar questions