Math, asked by king653, 4 months ago


If a line is drawn parallel to one side of a triangle, to intersect the other two sides, the other two sides
are divided in the same ratio. Using above theorem solve the following:
a. In AABC, D and E are the points on AB and AC such that DE||BC AD = 2cm, AB = 6cm, AC
= 9cm find AE
b. In AABC, D and E are the points on AB and AC such that DE||BC AD = x, DB = x - 2, AE = X
+2 EC = x - 1 find x

please give full explanation answer ​

Answers

Answered by nagdifatema
2

Answer:

Given:

DE∣∣BC

To prove that:

AE

EC

=

AD

BD

Proof:

∠AED=∠ACB Corresponding angles

∠ADE=∠ABC Corresponding angles

∠EAD is common to both the triangles

⇒ΔAED∼ΔACB by AAA similarity

AE

AC

=

AD

AB

AE

AE+EC

=

AD

AD+BD

AE

EC

=

AD

BD

Hence proved

solution

Answered by GlamorousAngel
102

 \huge \tt{ \underline{\underline{\blue{Answer: - }}}}

  \bold{ \underline{Given: - }}

 \sf{DE∣∣BC}

  \bold{ \underline{ To \:  prove \:  that:- }}

 \sf{ \dfrac{EC}{AE}</p><p></p><p>	</p><p> =  \dfrac</p><p>{BD}{AD</p><p>}}

  \bold{ \underline{ Proof:- }}

 \sf{∠AED=∠ACB    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:         \: Corresponding  \: angles}

 \sf{∠ADE=∠ABC    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:         Corresponding \:  angles}

 \sf{</p><p></p><p>∠EAD \:  is  \: common \:  to \:  both  \: the \:  triangles</p><p>}

 \sf{⇒ΔAED∼ΔACB  \: by  \: AAA similarity}

 \sf{⇒ \dfrac</p><p>{AC}{AE}</p><p>	</p><p> =\dfrac {AB}{</p><p>AD</p><p>}}

 \sf{⇒ \dfrac</p><p>{AE+EC}{AE}</p><p></p><p>	</p><p> = \dfrac{AD+BD</p><p>}{AD}}

 \sf{</p><p>⇒ \sf \green{ \dfrac{EC}{AE}</p><p></p><p>	</p><p> =  \dfrac</p><p>{BD}{AD</p><p>}}</p><p>	}

 \boxed {\bold{\red{Hence \:  proved \: }}}\:\:\:{ \bigstar}

━━━━━━━━━━━━━━━━━━━━

 \huge \tt{ \underline{\underline{\blue{Answer: - }}}}

 \implies{\sf{ \dfrac{EC}{AE}</p><p></p><p>	</p><p> =  \dfrac</p><p>{BD}{AD</p><p>}}}

 \implies{\sf{ \dfrac{9}{AE}</p><p></p><p>	</p><p> =  \dfrac</p><p>{6}{2</p><p>}}}

 \implies{ \sf{  \dfrac{18}{6} = AE}}

 \implies{ \sf \green{  3cm = AE}}

━━━━━━━━━━━━━━━━━━━━

 \huge \tt{ \underline{\underline{\blue{Answer: - }}}}

 \: \implies\sf{ \dfrac{EC}{AE}	 =  \dfrac{BD}{AD}}

 \: \implies\sf{ \dfrac{x-1}{x+2}	 =  \dfrac{x-2}{x}}

 \: \implies\sf{ (x-1)}{(x)	 =  ({x-2)}{(x + 2)}}

 \: \implies\sf{ ( {x}^{2} -x)	 =  ({ {x}^{2} -{2}^{2} )}{}}

 \: \implies\sf{ ( {x}^{2} -  {x}^{2}  -  x )	 =  ({  -{2}^{2} )}{}}

 \: \: \implies\sf{ ( \cancel{x}^{2} -  \cancel{x}^{2}  -  x )	 =  ({  -{2}^{2} )}{}}

 \: \: \implies\sf{ (   -  x )	 =  ({  -{2}^{2} )}{}}

 \: \: \implies\sf{ (   -  x )	 =  ({  4 )}{}}

 \: \: \implies\sf \green{   x 	 =  {   - 4 }{}}

\large\sf{\red{@\:Aꪀցꫀl}}

━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions