if a line is drawn parallel to one side of a triangle ,to intersect the other two sides ,the other two sides are divided in the same ratio using above theorem solve the following. ....1. .. in a triangle abc ,D and E are the points in Ab and ac such that De//bc ad=2, ab =6cm,ac=9cm find ae
Answers
Answered by
2
Construction: ABC is a triangle. DE || BC and DE intersects AB at D and AC at E.
Join B to E and C to D. Draw DN ⊥ AB and EM ⊥ AC.
To prove: ADDB=AEECADDB=AEEC
Proof:
ar AEM=12×(AD)×(EM)ar AEM=12×(AD)×(EM)
Similarly;
ar BDE=12×(DB)×(EM)ar BDE=12×(DB)×(EM)
ar ADE=12×(AE)×(DN)ar ADE=12×(AE)×(DN)
ar DEC=12×(EC)×(DN)ar DEC=12×(EC)×(DN)
Hence;
ar ADEar BDE=12×(AD)×(EM)12×(DB)×(EM)=ADDBar ADEar BDE=12×(AD)×(EM)12×(DB)×(EM)=ADDB
Similarly;
ar ADEar DEC=AEECar ADEar DEC=AEEC
Triangles BDE and DEC are on the same base, i.e. DE and between same parallels, i.e. DE and BC.
Hence, ar(BDE) = ar(DEC)
From above equations, it is clear that;
ADDB=AEECADDB=AEEC proved
Join B to E and C to D. Draw DN ⊥ AB and EM ⊥ AC.
To prove: ADDB=AEECADDB=AEEC
Proof:
ar AEM=12×(AD)×(EM)ar AEM=12×(AD)×(EM)
Similarly;
ar BDE=12×(DB)×(EM)ar BDE=12×(DB)×(EM)
ar ADE=12×(AE)×(DN)ar ADE=12×(AE)×(DN)
ar DEC=12×(EC)×(DN)ar DEC=12×(EC)×(DN)
Hence;
ar ADEar BDE=12×(AD)×(EM)12×(DB)×(EM)=ADDBar ADEar BDE=12×(AD)×(EM)12×(DB)×(EM)=ADDB
Similarly;
ar ADEar DEC=AEECar ADEar DEC=AEEC
Triangles BDE and DEC are on the same base, i.e. DE and between same parallels, i.e. DE and BC.
Hence, ar(BDE) = ar(DEC)
From above equations, it is clear that;
ADDB=AEECADDB=AEEC proved
Attachments:
rajeeixit8:
wrong you have to prove find ae
Similar questions
Math,
7 months ago
Computer Science,
7 months ago
Computer Science,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Biology,
1 year ago