if a=log 3 base30 ,b=log 5 base 30 then express log 16 base 30 in terms of a and b
Answers
Answered by
1
Step-by-step explanation:
Correct option is
B
3(1−a−b)
log303=a and log305=b
To find log308, we will use log3030=1
⟹log3030=1⟹log30(3×5×2)=1⟹log303+log305+log302=1⟹a+b+log302=1⟹log302=(1−a−b)∴log308=log3023=3log302=3(1−a−b)
Similar questions