Math, asked by srijatanandydgp, 1 year ago

If A = log base 2 log base 2 log base 4 256+ 2 log base root 2 2. A=?

Answers

Answered by maheshv22
5

a =  log_{2}(?)  log_{2}(?)  log_{4}(256)  + 2 log_{22}(?)  \\  log_{2}(?)   log_{2}(?)  log_{4}(? {4}^{5} )  + 2 log_{ \sqrt{22} }(?)  \\  log_{2}(?)  log_{2}(?) 4 log_{4}(4)  + 2 log_{ \sqrt{22} }(?)  \\  log_{2}(?)  log_{2}( {2}^{2} )  + 2 log_{ \sqrt{22} }(?)  \\  log_{2}(2)  + 2 log_{ \sqrt{22} }(?)  \\  log_{2}(2)  + 2 \times 1 \div 2 log_{22}(?)  \\  log_{2}(22 \times  \\  log_{2}(2)  +  log_{22}(1)  \\ 1 + 0 =  \\  = 1

Answered by erinna
15

The value of A is 5.

Step-by-step explanation:

The given equation is

A=\log_2(\log_2(\log_4(256)))+2\log_{\sqrt{2}}(2)

It can be rewritten as

A=\log_2(\log_2(\log_4(4^4)))+2\log_{\sqrt{2}}(\sqrt{2}^2)

Using the properties of logarithm we get

A=\log_2(\log_2(4))+2(2)      [\because \log_aa^x=x]

A=\log_2(\log_2(2^2))+4

A=\log_2(2)+4

A=1+4

A=5

Therefore, the value of A is 5.

#Learn more

Properties of log.

https://brainly.in/question/13261150

Similar questions