Math, asked by tanvirahmedtowkir, 1 year ago


if \: a = log_{x}(xyz) \: b = log_{y}(xyz) \: c = log_{c}(xyz) \: then \: prove \: 1 \div a + 1 \div b + 1 \div c = 1ifa=logx​(xyz)b=logy​(xyz)c=logc​(xyz)thenprove1÷a+1÷b+1÷c=1​

Answers

Answered by sahildhande987
9

\huge{\tt{\underline{\red{Given}}}}

a=log_{x}^{xyz}

b=log_{y}^{xyz}

c= log_{z}^{xyz}

To prove:

\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1

Solution:

We know that

log_{xyz}^{x} = \frac{1}{a}

Similarly

\frac{1}{b} = log_{xyz}^{y}

\frac{1}{c} = log_{xyz}^{z}

So from this

\frac{1}{a} + \frac{1}{b} + \frac{1}{c} =

\implies log_{xyz}^{x} + log_{xyz}^{y} + log_{xyz}^{z}

Now we have xyz as common base

So as per the property of log

Log_{xyz}^{x} + Log_{xyz}^{z} + Log_{xyz}^{z}

\implies log_{xyz}^{xyz}

Therefore This equals to 1

Similar questions