Math, asked by richatripathi0411, 3 months ago

IF A.M & G.M of a&b are in ratio m:n Prove
that a:b= m+✓m^2-n^2 : m-✓m²_n²

Answers

Answered by tennetiraj86
15

Step-by-step explanation:

Given :-

A.M and G.M of a and b are in the ratio is m:n

To find:-

Prove that a:b= m+✓(m^2-n^2) : m-✓(m^2-n^2)

Solution:-

Let a and b be any numbers then

Arithmetic Mean of a and b = (a+b)/2

A.M = (a+b)/2----------(1)

Let a and b be any numbers then

Geometric Mean of a and b = √ab

G.M = √(ab)----------(2)

The ratio of A.M and G.M of a and b =

(a+b)/2 :√ab --------(3)

According to the given problem

The ratio of A.M and G.M of a and b =m:n

=>(a+b)/2 :√ab = m:n

We know tht a:b can be written as a/b

=>[(a+b)/2]/√(ab) = m/n

=>(a+b)/2√ab = m/n

=>a+b = 2√ab ×m/n------(4)

We know that

(a-b)^2 = (a+b)^2-4ab

=>(a-b)^2 = [2√abm/n]^2-4ab

=>(a-b)^2 = 4abm^2/n^2 -4ab

=>(a-b)^2 = (4abm^2-4abn^2)/n^2

=>(a-b)^2 = [4ab(m^2-n^2)]/n^2

=>a-b = √[{4ab(m^2-n^2)}/n^2]

=>a-b = 2√[ab(m^2-n^2)]/n---------(5)

On adding (1)&(2) then

a+b+a-b=[2√ab ×m/n]+2√[ab(m^2-n^2)]/n

=>2a = [2m√ab +2√[ab(m^2-n^2)]]/n

=>2a = 2√ab [m+√(m^2-n^2)/n]

=>a = (√ab/n) [m+(√m^2-n^2)]------(6)

On Substituting the value of a in (4) then

(√ab/n) [m+(√m^2-n^2)] + b = 2m√(ab)/n

=>b= 2m√(ab)/n -[(√ab/n) [m+(√m^2-n^2)]]

=>b =[ 2m√(ab)-[√(ab)[[m+(√m^2-n^2)]]/n

b=[2m√(ab)-√(ab)m -√(ab)(√m^2-n^2)]/n

=>b=[m√(ab)-√(ab)√(m^2-n^2)]/n

=>b = √(ab)/n[m-√(m^2-n^2)]------(7)

Now from (6)&(7)

a:b=>

(√ab/n) [m+(√m^2-n^2)]:(√(ab)/n)[m-√(m^2-n^2)]

On cancelling (√ab/n) then

=>[m+(√m^2-n^2)] : [m-√(m^2-n^2)]

Answer:-

a:b = [m+(√m^2-n^2)] : [m-√(m^2-n^2)]

Used formula:-

  • Arithmetic Mean of a and b = (a+b)/2

  • Geometric Mean of a and b = √ab

  • (a-b)^2 = (a+b)^2-4ab
Similar questions