Math, asked by mariyambabu, 9 months ago

if a pair of dice is thrown find the probability that the sum is neither 7 or 11

Answers

Answered by pulakmath007
2

\huge{\mathcal{\underline{\green{SOLUTION}}}}

A pair of dice is rolled once

So the total number of possible outcomes

 =  {6}^{2}  = 36

Let A be the event that the sum is 7

Let B be the event that the sum is 11

So the event points for the event A

(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)

So the total number of possible outcomes for the event A is 6

So

P(A) =  \frac{6}{36}  =  \frac{1}{6}

Now the event points for the event B

(5,6),(6,5)

So

P(B) =  \frac{2}{36}  =  \frac{1}{18}

Now A ∩ B is the of getting sum of both 7 & 11

So the event points for the event A ∩ B is 0

So P( A ∩ B)

= 1 - ( P(A) + P( B) - P( A ∩ B))

 = 1 -  \frac{1}{6}  -  \frac{1}{18}  + 0

 =  \frac{14}{18}

 =  \frac{7}{9}

SO THE REQUIRED PROBABILITY

 = \:  P( {A}^{c}∩ \:  { B}^{c}  )

= P {(A∪B)}^{c}

= 1 -  P(A ∪B \: )

Answered by ravanji786
0

A pair of dice is rolled once<br />So the total number of possible outcomes<br />= {6}^{2} = 36=6​2​​=36<br />Let A be the event that the sum is 7<br />Let B be the event that the sum is 11<br />So the event points for the event A<br />(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)<br />So the total number of possible outcomes for the event A is 6<br />So<br />P(A) = \frac{6}{36} = \frac{1}{6}P(A)=​36​​6​​=​6​​1​​<br />Now the event points for the event B<br />(5,6),(6,5)(5,6),(6,5)<br />So<br />P(B) = \frac{2}{36} = \frac{1}{18}P(B)=​36​​2​​=​18​​1​​<br />Now A ∩ B is the of getting sum of both 7 &amp; 11<br />So the event points for the event A ∩ B is 0<br />So P( A ∩ B)<br /><br />= 1 - \frac{1}{6} - \frac{1}{18} + 0=1−​6​​1​​−​18​​1​​+0<br />= \frac{14}{18}=​18​​14​​<br />= \frac{7}{9}=​9​​7​​<br />SO THE REQUIRED PROBABILITY<br />hope \: it \: helps \: dude \
Similar questions