Math, asked by garnab731, 2 months ago

If a polynomial x ki power 4 + 2 x cube + 8 x square + 12 x + 18 is divided by another polynomial X square + 5 the remainder comes out to be X + 2 find the value of P and Q

Answers

Answered by mathdude500
1

Appropriate Question :-

If the polynomial x⁴ + 2x³ + 8x² + 12x + 18 is divided by another polynomial x² + 5, the remainder comes out to be (px + q) then find the values of p and q.

Answer

Given :-

  • The polynomial x⁴ + 2x³ + 8x² + 12x + 18 is divided by another polynomial x² + 5.

  • The remainder comes out to be (px + q)

To Find:-

  • The value of p and q.

Solution:-

Here, we first divide the polynomial x⁴ + 2x³ + 8x² + 12x + 18 is divided by another polynomial x² + 5, using long division.

So, by using long division, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\: \:  \:  \:  \:  \:  \:  {x}^{2}  \: + 2x \:   +  \: 3 \:  \:  \:  \: \:\:}}}\\ {{\sf{ {x}^{2} + 5}}}& {\sf{\: {x}^{4} +  {2x}^{3} +  {8x}^{2} + 12x + 18 \:}} \\{\sf{}}&\underline{\sf{\: \:  \:  { -  x}^{4}  \:  \:  \:  \: \:  \:  \:   \:  - 5{x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:}}\\{\sf{}}&{\sf{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {2x}^{3}  + {3x}^{2}  + 12x + 18\:\:}}\\{\sf{}}&\underline{\sf{\:\: { - 2x}^{3} \:  \:  \:  \:  \:  \:  \:  \:  - 10x  \:\:}}\\{\sf{}}&{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {3x}^{2} + 2x + 18\:\: \:  \:  \:  \:  \:  \:  \:  \: }}\\{\sf{}}& \underline{\sf{\:\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { - 3x}^{2} \:  \:  \:  \:  \:  \:  \:  \:  - 15  \:\:}}\\{\sf{}}&\underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2x  \: + \:  3 \:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

Thus,

\rm :\longmapsto\:Remainder = 2x + 3

But, it is given that

\rm :\longmapsto\:Remainder = px + q

So, on comparing we get,

\bf\implies \:p = 2 \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \: q = 3

Similar questions