Math, asked by shilpi21, 1 year ago

if a positive number exceeds its positive square roots by 12,then find the number.

Answers

Answered by Anonymous
83
let the positive number be x 
according to question 
√x + 12 = x 
⇒√x= x - 12
squaring both sides
⇒x= x² - 24x +144
⇒x² - 25x + 144 = 0 
⇒x² - 16x - 9x +144=0
⇒x(x - 16) - 9(x - 16)=0
⇒(x - 9)(x - 16)=0
so the number is 9,16


Anonymous: plz mark as best
shilpi21: ok
Anonymous: plz mark s best
Answered by karthik4297
33
consider the number is x
a/q,
          x = √x+12
⇒       12-x = -√x
on squaring both side of the equation ,    
 12^{2} -2.12.x+ x^{2} =(-  \sqrt{x}) ^{2}  \\  x^{2} -24x+144=x \\  x^{2} -24x-x+144=0 \\  x^{2} -25x+144=0 \\  x^{2} -16x-9x+144=0 \\ x(x-16)-9(x-16)=0 \\ (x-16)(x-9)=0
so,
                x-16 = 0 ⇒ x = 16
     and     x-9 = 0 ⇒ x= 9 
therefore numbers will be 9,16
Similar questions