Math, asked by GodSD, 1 year ago

If a ray stands on a line, then the sum of the adjacent angles so formed is 180°.​

Answers

Answered by GodBrainly
7

\huge{\underline{\mathfrak{Solution:}}}

____________________________________

\sf{\large{\underline{\underline{Given \colon}}}}

A ray CD which stands on a line AB such that \sf\angle ACD and \sf \angle BCD \: are \: formed.

____________________________________

\sf{\large{\underline{\underline{To \: Prove \colon}}}}

\sf \angle ACD + \angle BCD = 180 \degree.

____________________________________

\sf{\large{\underline{\underline{Construction \colon}}}}

Draw ray \sf CE \perp AB.

____________________________________

\sf{\large{\underline{\underline{Prove \colon}}}}

We have,

\angleACD = \angleACE + \angleECD .....(i)

and,

\angleBCD = \angleBCE - \angleECD .....(ii)

Adding (i) and (ii), we get

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf \angle ACD + \angle BCD = \angle A C E + \angle ECD + \angle BCE - \angle ECD \\ \sf \implies \: \: \: \: \: \: \: \angle ACD + \angle BCD = \angle A C E + \angle BCE \\ \sf \implies \: \: \: \: \: \: \: \angle ACD + \angle BCD = 90 \degree + 90 \degree \\ \sf \implies \: \: \: \: \: \: \: \angle ACD + \angle BCD = 180 \degree \\ \\ \sf Hence , \huge\boxed { \boxed{ \blue{\small \sf\angle ACD + \angle BCD = 180 \degree}}}

✔✔ Hence, it is proved ✅✅.

____________________________________

Answered by Anonymous
2

ANSWER

When a ray stands on a line, two adjacent angles are formed.

We know that the angle lying on a straight line is 180°.

The two angles being adjacent, make a total angle of 180° on the straight line.

Another way, we can see since the ray stands on the straight line, we can consider it is a perpendicular line.

Thus, the two adjacent angles are right angles.

So, the total angle

= 90° + 90°

= 180°


Anonymous: stop
Similar questions