Math, asked by Anonymous, 8 months ago

if a right circular cone has raidus has 4cm and slant height 5cm then what is the its volume ​

Answers

Answered by Anonymous
13

ANSWER✔

\Large\underline\bold{GIVEN,}

 \sf\dashrightarrow  radius \:of\:of\:cone\:=4cm

 \sf\dashrightarrow slant\:height\:of\:the\:cone=5cm

\Large\underline\bold{TO\:FIND}

 \sf\dashrightarrow  height\:of\:cone\:

 \sf\large\dashrightarrow volume\:of\:the\:cone

LET,

 \sf\large\therefore taking\:two\:cases\:

 \sf\therefore in\:case\:1,\:we\:will\:find\:height\:of\:the\:

 \sf\therefore in\:case\:2\:we\:will\:find\:volume\:of\:cone

\Large\underline\bold{SOLUTION,}

\large{\fbox {CASE:-1}}

 \sf\therefore let\:the\:height\:of\:the\:cone\:be\:x\:cm

USING FORMULA,

\large{\boxed{\bf{ \star\:\:(hypo)^2=(S)^2+(S)^2 \:\: \star}}}

" OR,

 \sf\large\therefore (L)^2=(r)^2+(x)^2

 \sf\therefore radius=4cm

 \sf\therefore slant\:height= 5cm

NOW,

\sf{\implies (5)^2 = (4)^2 + (x)^2 }

\sf{\implies (5)^2 - (4)^2 = (x)^2 }

\sf{\implies  25 - 16 = (x)^2 }

\sf{\implies  (x)^2 =9}

\sf{\implies x= \sqrt{9}  }

\sf{\implies x=3cm }

\sf{\boxed{\sf{height=3cm}}}

\large {\fbox {CASE:-2}}

 \sf\large\therefore to\:find\:the\:volume\:of\:cone

 \sf\therefore H=3CM

 \sf\therefore R=4CM

NOW,

\Large\underline\bold{BY\:USING\: FORMULA}

 \sf\large\therefore VOLUME\:OF\:CONE = \dfrac{1}{3} \pi r^2 h

 \sf\therefore VOLUME\:OF\:CONE = \dfrac{1}{3} \times \dfrac{22}{7} \times (4)^2 \times h

\sf{\implies \dfrac{1}{\cancel {3}} \times \dfrac{22}{7} \times (4)^2 \times \cancel{3}}

\sf{\implies \dfrac{22}{7} \times 4 \times 4 }

\sf{\implies \dfrac{22}{7} \times 16 }

\sf{\implies \cancel\dfrac{352}{7}}

\large\underline\bold{VOLUME\:OF\:CONE = 50.28 \: CM^3}

_____________

✯ADDITIONAL INFORMATION,

✯DIAGRAM OF RIGHT TRIANGLE,

\setlength{\unitlength}{1.6mm}\begin{picture}(30,20)\linethickness{0.1mm}\put(0,0){\line(0,1){37.5}}\put(0,0){\line(1,0){25}}\put(25,0){\line(-2,3){25}}\end{picture}\put(-32,18){3}\put(-18,-1.5){4}\put(-18.2,20){5}

✯DIAGRAM OF RIGHT CIRCULAR CONE,

Cone

\begin{lgathered}\setlength{\unitlength}{0.99cm}\begin{picture}(6, 4)\linethickness{0.26mm}\qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){2.8}}\put(3.2,4){\sf{3cm}}\put(3,2){\line(0,2){4.5}}\put(1.5,1.7){\sf{4cm}}\qbezier(.2,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(1,4){\sf l}\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture}\\\end{lgathered}

_____________

Answered by only007team
0

Radius of circular of cone = 4cm

Slant height of cone = 5cm

Since,

Surface area of remaining wood = Surface area of cylinder - surface area of cone

= (2πrh + 2πr²) - (πr² + πrl)

= πrh + πr² [Since h = l = 5cm]

= π (20+16) = 36π cm²

Similar questions