Math, asked by silpipaul2006, 19 days ago

If a right circular cylinders volume =V
total surface area =S , height =h , ground radius is r then proof S=2V(1/h+1/r)


pls step by step answer and spam =ban​

Answers

Answered by mathdude500
17

Question :-

If a right circular cylinder has volume = V, total surface area = S, height =h, ground radius is r, then prove that

\rm \: S = 2V\bigg(\dfrac{1}{h}  + \dfrac{1}{r}\bigg)  \\

\large\underline{\sf{Solution-}}

We know that,

Volume of cylinder (V) of radius r and height h is

\rm \: Volume_{(cylinder)} \: =  \:  V =  \: \pi \:  {r}^{2}h -  -  -  - (1) \\

Now, Total Surface area (S) of cylinder of radius r and height h is

\rm \: S \:  =  \: 2\pi \: r \: (h \:  +  \: r) -  -  -  - (2) \\

Now, Consider

\rm \: 2V\bigg(\dfrac{1}{h}  + \dfrac{1}{r}\bigg)  \\

On substituting the value of V, from equation (1), we get

\rm \: =  \:  2\pi \:  {r}^{2}h \bigg(\dfrac{r + h}{hr} \bigg)  \\

\rm \:  =  \: 2 \: \pi \: r \: (h \:  +  \: r) \\

\rm \:  =  \: S \\

Hence,

\rm\implies \:\boxed{\rm{  \:\rm \: S = 2V\bigg(\dfrac{1}{h}  + \dfrac{1}{r}\bigg) \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions