Math, asked by sms12sara, 4 months ago

if a=root 2+1 find (a-1/a)^2
pls answer step by step ​


sms12sara: no just root 2 +1
sms12sara: root is only for 2
nariseamalavathi: okk
nariseamalavathi: but now i can't answer
nariseamalavathi: ☹️☹️
sms12sara: when can u
sms12sara: its ok
nariseamalavathi: okk i am doing
nariseamalavathi: u just few for min
sms12sara: sure take ur time

Answers

Answered by nariseamalavathi
1

Step-by-step explanation:

a=√2+1

(a-1/a)²

=(√2+1-1/√2+1)²

=(√2)²/(√2+1)²

=2/(√2)²+1²+2(√2)(1)

=2/2+1+2√2

=2/3+2√2


sms12sara: thanks
nariseamalavathi: ur welcome
Answered by BrainlyIAS
5

\sf \pink{a=\sqrt{2}+1}

\sf \dfrac{1}{a}=\dfrac{1}{\sqrt{2}+1}

On rationalizing the denominator ,

:\implies \sf \dfrac{1}{a}=\dfrac{1}{\sqrt{2}+1} \times \dfrac{\sqrt{2}-1}{\sqrt{2}-1}

  • (a + b)(a - b) = a² - b²

:\implies \sf \dfrac{1}{a}=\dfrac{\sqrt{2}-1}{(\sqrt{2})^2-(1)^2}

:\implies \sf \dfrac{1}{a}=\dfrac{\sqrt{2}-1}{2-1}

:\implies \sf \dfrac{1}{a}=\dfrac{\sqrt{2}-1}{1}

:\implies \sf \pink{\dfrac{1}{a}=\sqrt{2}-1}

So ,

\mapsto \sf \red{\bigg(a-\dfrac{1}{a} \bigg)^2}

\sf \mapsto \bigg( (\sqrt{2}+1) - ( \sqrt{2} -1) \bigg)^2

\mapsto \sf \big( \sqrt{2}+1-\sqrt{2}+1 \big)^2

\mapsto \sf (2)^2

\mapsto \green{4}\ \; \bigstar


sms12sara: thank u sooo much
BrainlyIAS: Welcome ♥ ^^'
Similar questions