Math, asked by dkenterprisesespurne, 7 months ago

If a
s = √5 +3/2 then find the value of x² + 1/x2

Answers

Answered by ak6372011
0

Step-by-step explanation:

)x=

2

(3+

5

−−(1)

ii ) \frac{1}{x} = \frac{2}{(3+\sqrt{5})}ii)

x

1

=

(3+

5

)

2

= \frac{2(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}=

(3+

5

)(3−

5

)

2(3−

5

)

= \frac{2(3-\sqrt{5})}{3^{2}-(\sqrt{5})^{2}}=

3

2

−(

5

)

2

2(3−

5

)

= \frac{2(3-\sqrt{5})}{9- 5}=

9−5

2(3−

5

)

= \frac{2(3-\sqrt{5})}{4}=

4

2(3−

5

)

= \frac{(3-\sqrt{5})}{2} \: ---(2)=

2

(3−

5

)

−−−(2)

\begin{gathered}iii ) x + \frac{1}{x} \\= \frac{(3+\sqrt{5})}{2} + \frac{(3-\sqrt{5})}{2} \\= \frac{3+\sqrt{5} + 3-\sqrt{5}}{2} \\= \frac{6}{2} = 3\: ---(3)\end{gathered}

iii)x+

x

1

=

2

(3+

5

)

+

2

(3−

5

)

=

2

3+

5

+3−

5

=

2

6

=3−−−(3)

\begin{gathered}iv ) Now , the \: value \:of \: x^{2} + \frac{1}{x^{2}} \\= \Big( x + \frac{1}{x} \Big)^{2} - 2 \times x \times \frac{1}{x} \\= 3^{2} - 2\\= 9 - 2 \\= 7\end{gathered}

iv)Now,thevalueofx

2

+

x

2

1

=(x+

x

1

)

2

−2×x×

x

1

=3

2

−2

=9−2

=7

Therefore.,

\red { The \: value \:of \: x^{2} + \frac{1}{x^{2}} } \green {= 7 }Thevalueofx

2

+

x

2

1

=7

Answered by azamulhaq279
1

no body answer you bro plz chat me

Similar questions