If a sec + b tan + c = 0
p sec + q tan + r = 0
prove that
(br-qc)^2 - (pc-ar)^2 = (aq-bp)^2
....
PLZ ANSWER IT FAST
Answers
Step-by-step explanation:
it is given that:
asecθ + btanθ + c = 0
c = -asecθ - btanθ
c = -(a secθ + b tanθ) --- (1)
And
p secθ + q tanθ + r = 0
r = -(p secθ + q tanθ) --- (2)
LHS:
= (br - qc)² - (pc - ar)² = (ap - bq)²
= [b(-p secθ - q tanθ) - q(-a secθ - b tanθ)] - [p(-a secθ - b tanθ) - a( -p secθ - qtanθ)]
= -bpsecθ - bqtanθ + aqsecθ + bqtanθ - [apsecθ - bptanθ + apsecθ + aqtanθ]
= -bpsecθ - bqtanθ + aqsecθ + bqtanθ - apsecθ + bptanθ - apsecθ - aqtanθ
= -bpsecθ + aqsecθ + bptanθ - aqtanθ
= (aq - bp)²(sec²θ - tan²θ)
= (aq-bp)²(1)
= (aq-bp)²
= RHS.
Hope it helps you.
#Bebrainly
Solution
→ a sec∅ + b tan∅ + c = 0
→ p sec∅ + q tan∅ + r = 0
By cross multiplication method,
→ sec∅/(br - qc) = - tan∅/(ar - pc) = 1/(aq - bp)
→ sec∅ = (br - qc)/(aq - bp)
→ tan∅ = (pc - ar)/(aq - bp)
→ sec²∅ - tan²∅ = 1 [Identity]
→ [(br - qc)/(aq - bp)]² - [(pc - ar)/(aq - bp)]² = 1
→ [(br - qc)² - (pc - ar)²] = (aq - bp)²