Math, asked by swathisreemai, 1 month ago

If a sin^2 x+b cos^2x=c show that tan^2x =c-b/a-c​

Answers

Answered by mathdude500
6

\large\underline{\sf{Given- }}

\rm :\longmapsto\:a {sin}^{2}x \:  +  \: b {cos}^{2}x = c

\large\underline{\sf{To\:show - }}

\rm :\longmapsto\: {tan}^{2} x = \dfrac{c - b}{a - c}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a {sin}^{2}x \:  +  \: b {cos}^{2}x = c

\boxed{ \bf{ \: Divide \: both \: sides \: by \:  {cos}^{2}x}}

\rm :\longmapsto\:\dfrac{a {sin}^{2} x}{ {cos}^{2} x}  + \dfrac{b {cos}^{2} x}{ {cos}^{2} x}  = \dfrac{c}{ {cos}^{2} x}

We know,

\boxed{ \bf{ \: tanx =  \frac{sinx}{cosx}}}

and

\boxed{ \bf{ \: secx =  \frac{1}{cosx}}}

\rm :\longmapsto\:a {tan}^{2}x + b = c \:  {sec}^{2}x

\rm :\longmapsto\:a {tan}^{2}x + b = c \:(1 +   {tan}^{2}x)

\rm :\longmapsto\:a {tan}^{2}x + b = c \: + \: c{tan}^{2}x

\rm :\longmapsto\:a {tan}^{2}x -  {ctan}^{2}x  = c \:  -  \: b

\rm :\longmapsto\:{tan}^{2}x (a- c)  = c \:  -  \: b

\rm :\longmapsto\: {tan}^{2}x = \dfrac{c - b}{a - c}

Hence, Proved

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions