Math, asked by LudoBagman, 9 months ago

If a=sin(π/4), b=cos(π/4) & c=-cosec(π/4). Then a^3 + b^3 + c^3 = ?​

Answers

Answered by raiayush2017
3

Answer:

5/(2)^0.5 .

5 \div \sqrt{2}

Answered by SteffiPaul
0

Given,

  • a= sin π/4
  • b = cos π/4
  • c = -cosec π/4

To find,

  • We have to find the value of a^3 +b^3 +c^3.      (1)

Solution,

If a =sin(π/4), b=cos(π/4) & c=-cosec(π/4) then a^3 +b^3 +c^3 is  -3/\sqrt{2}.

As we know that,

sin π/4 = 1/\sqrt{2} , cos π/4 = 1/\sqrt{2}, cosec  π/4 = \sqrt{2},

Substituting the above values in (1), we get

       (sin π/4)³ + (cos π/4)³ + ( -cosec π/4)³

           (1/\sqrt{2})³ +   (1/\sqrt{2})³  + (- \sqrt{2}

              1/2\sqrt{2} + 1/2\sqrt{2} -2\sqrt{2}

Taking 2\sqrt{2} as LCM, we get

             2 -8/2\sqrt{2}

                -6/2\sqrt{2}

                 -3/\sqrt{2}

Hence, if a =sin(π/4), b=cos(π/4) & c=-cosec(π/4) then a^3 +b^3 +c^3 is  -3/\sqrt{2}.  

Similar questions