if a sin theta + b cos theta = c then prove that a cos theta- b sin theta = √a^2+ b^2- c^2
Answers
Answered by
8
Answer:
Given :-
→ a cos∅ + b sin∅ = c .......(1) .
Now,
→ ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² .
= a²cos²∅ + b²sin²∅ - 2a sin∅ b cos∅ + a²cos²∅ + b²sin²∅ + 2a sin∅ b cos∅ .
= a²sin²∅ + a²cos²∅ + b²cos²∅ + b²sin²∅ .
= a²( sin²∅ + cos²∅ ) + b²( cos²∅ + sin²∅ ) .
= a² + b² . [ ∵ sin²∅ + cos²∅ = 1 ] .
Thus, ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² = ( a² + b² ) .
⇒ c² + ( a sin∅ + b cos∅ )² = ( a² + b² ) .
⇒ ( a sin∅ - b cos∅ )² = ( a² + b² - c² ) .
⇒ ( a sin∅ - b cos∅ ) = ±√( a² + b² - c² ) .
Hence,
Answered by
4
Answer:
Check the attachment if you ever come online again!
Attachments:
Similar questions
Math,
5 months ago
Math,
5 months ago
Business Studies,
5 months ago
Math,
10 months ago
Math,
10 months ago
English,
1 year ago
Social Sciences,
1 year ago