Math, asked by cchakradhar669, 2 months ago

If a soild sphere with total surface area 48cm2 is bisected into two hemispheres, then find the
total surface area of any one of the hemisphere ?

Answers

Answered by varadad25
39

Answer:

The total surface area of the hemisphere is 36 cm².

Step-by-step-explanation:

We have given that,

Total surface area of sphere = 48 cm²

The sphere is bisected into two hemispheres.

We have to find the total surface area of any one of the hemispheres.

Now, we know that,

\displaystyle{\pink{\sf\:Total\:surface\:area\:of\:sphere\:=\:4\:\pi\:r^2}}

\displaystyle{\implies\sf\:48\:=\:4\:\times\:\dfrac{22}{7}\:\times\:r^2}

\displaystyle{\implies\sf\:r^2\:=\:\dfrac{48\:\times\:7}{4\:\times\:22}\:\quad\:\dots\:(\:1\:)}

Now,

\displaystyle{\blue{\sf\:Total\:surface\:area\:of\:hemisphere\:=\:3\:\pi\:r^2}}

\displaystyle{\implies\sf\:TSA_{Hemisphere}\:=\:3\:\times\:\dfrac{22}{7}\:\times\:\dfrac{48\:\times\:7}{4\:\times\:22}\:\quad\:\dots\:[\:From\:(\:1\:)\:]}

\displaystyle{\implies\sf\:TSA_{Hemisphere}\:=\:\dfrac{3\:\times\:\cancel{22}\:\times\:48\:\times\:\cancel{7}}{\cancel{7}\:\times\:4\:\times\:\cancel{22}}}

\displaystyle{\implies\sf\:TSA_{Hemisphere}\:=\:\dfrac{3\:\times\:\cancel{48}}{\cancel{4}}}

\displaystyle{\implies\sf\:TSA_{Hemisphere}\:=\:3\:\times\:12}

\displaystyle{\implies\underline{\boxed{\red{\sf\:TSA_{Hemisphere}\:=\:36\:cm^2}}}}

∴ The total surface area of the hemisphere is 36 cm².

Answered by Anonymous
22

Answer:

Given :-

  • A solid sphere with total surface area 48 cm² is bisected into two hemisphere.

To Find :-

  • What is the total surface area of any one of the hemisphere.

Formula Used :-

\clubsuit Total Surface Area of Sphere Formula :

\longmapsto \sf\boxed{\bold{\pink{T.S.A\: of\: Sphere =\: 4{\pi}r^2}}}\\

\clubsuit Total Surface Area of Hemisphere Formula :

\longmapsto \sf\boxed{\bold{\pink{T.S.A\: Of\: Hemisphere =\: 3{\pi}r^2}}}

where,

  • T.S.A = Total Surface Area
  • r = Radius

Solution :-

First, we have to find the radius :

Given :

\bigstar Total Surface Area = 48 cm²

According to the question by using the formula we get,

\implies \sf 4 \times \dfrac{22}{7} \times r^2 =\: 48

\implies \sf r^2 =\: \dfrac{48 \times 7}{4 \times 22}

\implies \sf \bold{\green{r^2 =\: \dfrac{336}{88}}}

Now, we have to find the total surface area of hemisphere :

Given :

\bigstar \: \:  \sf r^2 =\: \dfrac{336}{88}

According to the question by using the formula we get,

\longrightarrow \sf T.S.A\: of\: Hemisphere =\: 3 \times \dfrac{22}{7} \times \dfrac{336}{88}\\

\longrightarrow \sf T.S.A\: of\: Hemisphere =\: 3 \times \dfrac{\cancel{7392}}{\cancel{616}}\\

\longrightarrow \sf T.S.A\: of\: Hemisphere =\: 3 \times \dfrac{12}{1}\\

\longrightarrow \sf T.S.A\: of\: Hemisphere =\: 3 \times 12\\

\longrightarrow \sf\bold{\red{T.S.A\: of\: Hemisphere=\: 36\: cm^2}}

\therefore The total surface area or TSA of hemisphere is 36 cm².

Similar questions