Math, asked by vijaybahadurpal, 11 months ago

if a square + b square +c square is equal to 200 and ab +bc +ca is equal to 28 then find the value of a+ b +c​

Answers

Answered by sam0658
9

Hope it helps you out

Mark it brainliest.....

Attachments:
Answered by Anonymous
6

Answer :- + - 16

Given :-

 {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 200 \\ ab + bc + ca = 28 \\ a + b + c =

(a + b + c) ^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca)

(a + b + c) ^{2}  = 200 + 2 \times 28

(a + b + c) ^{2}  = 200 + 56

(a + b + c) ^{2}   = 256

(a + b + c) ^{2}  = ( +  - 16) ^{2}  \\ a + b + c =  +  - 16

[ Taking square root of both sides ]

Similar questions