Math, asked by rjkumar1203, 11 months ago

if a square + b square + c square is equal to 74 and AB + BC + CA is equal to 61 find a + b + c ​

Answers

Answered by Anonymous
35

\large\underline\mathfrak{Answer}

a + b + c = 14

\large\underline\mathfrak{Explanation}

\begin{lgathered}\bold{Given} \begin{cases}\sf{a^2+b^2+c^2=74} \\ \sf{ab+bc+ac=61}\end{cases}\end{lgathered}

\bold\red{To\:Find-}

  • Value of (a+b+c)

\bold\red{Explanation-}

We know that,

\large\boxed{\tt{(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ab)}}

Putting the given values,

\implies \sf{(a+b+c)^2=74+2(61)}

\implies \sf{(a+b+c)^2=74+122}

\implies \sf{(a+b+c)^2=196}

\implies \sf{(a+b+c)=\sqrt{196}}

\implies \sf{(a+b+c)=14}

Hence, the value of (a+b+c) is 14.

\rule{200}2

Verification :

Putting the values separately in LHS and RHS,

\implies \sf{(14)^2=74+2(61)}

\implies \sf{196=74+122}

\implies \sf{196=196}

Hence verified!

Answered by mddilshad11ab
27

Step-by-step explanation:

Given

++=74

ab+bc+ca=61

a+b+c=?

we know that,

(a+b+c)²=+++2(ab+bc+ca)

here we have to put the value

(a+b+c)²=74+2*61

(a+b+c)²=74+122

(a+b+c)²=196

(a+b+c)=196

a+b+c=14

hence:-

the value of (a+b+c)=14

Similar questions