Math, asked by Padey, 1 year ago

If a tangent PT and a line segment PBA is drawn to a circle with centre O. If OL is perpendicular to AB, prove that PA. PB=PT^2.

Answers

Answered by KanikAb
12
i hope this will help you.... :-)
Attachments:
Answered by mysticd
3

\underline { \pink { Given : }}

A tangent PT and a line segment PBA is drawn to a circle with center 'O' .

 OL \perp AB

\underline { \pink { To \:prove  : }}

 \red { PA \times PB } \green {= PT^{2}}

\underline { \pink { Construction  : }}

 Join \: OP , OT \: and \: OA

\underline { \green { Proof  : }}

 The\:foot \;of \:the \: perpendicular \:from \\the\:centre\:to \:a \:chord \: bisects \:the \:chord.

 OL \perp AB \implies AL = LB \: --(1)

 Now, \red {PA \times PB} \\= ( PL - AL )(PL+LB) \\=( PL - AL )(PL+AL)\: [From \:(1) ]\\= PL^{2} - AL^{2} \\= ( OP^{2} - OL^{2} ) - AL^{2}

 \blue {( In \:right \:angle {OLP}, we \:have }\\\blue { OP^{2} = OL^{2} + PL^{2} }

 \blue { PL^{2} = OP^{2} - OL^{2} ) }

 = OP^{2} - ( OL^{2} + AL^{2} )

 = OP^{2} - OA^{2}

 \blue {( In \:right \:angle {OLA}, we \:have }\\\blue {OA^{2} = OL^{2} + AL^{2} )}

 = OP^{2} - OA^{2} \: \blue { ( OA = OT = r)}

 = PT^{2}

 \blue { ( \angle {OTP } = 90\degree }\\\blue {OP^{2} = OT^{2} + PT^{2} \implies OP^{2} - OT^{2} = PT^{2} )}

 Hence , \: PA \times PB = PT^{2}

•••♪

Attachments:
Similar questions