Math, asked by PragyaTbia, 1 year ago

If A =  \left[\begin{array}{ccc}2&-4\\-5&3\end{array}\right] then find A + A' and AA'

Answers

Answered by hukam0685
0

Answer:

A + A^{'}=\left[\begin{array}{ccc}4&-9\\-9&6\end{array}\right]\\

A.A^{'}=\left[\begin{array}{ccc}20&-22\\-22&34\end{array}\right]\\\\

Step-by-step explanation:

If

A =\left[\begin{array}{ccc}2&-4\\-5&3\end{array}\right]

 then

A^{'} =\left[\begin{array}{ccc}2&-5\\-4&3\end{array}\right]

so to find

A + A^{'}=\left[\begin{array}{ccc}2&-4\\-5&3\end{array}\right]+\left[\begin{array}{ccc}2&-5\\-4&3\end{array}\right]\\\\\\\=\left[\begin{array}{ccc}2+2&-4-5\\-5-4&3+3\end{array}\right]\\\\

A +A^{'}=\left[\begin{array}{ccc}4&-9\\-9&6\end{array}\right]\\

and for

A.A^{'}=\left[\begin{array}{ccc}2&-4\\-5&3\end{array}\right]\times\left[\begin{array}{ccc}2&-5\\-4&3\end{array}\right]\\\\\\A.A^{'}=\left[\begin{array}{ccc}20&-22\\-22&34\end{array}\right]\\\\

Similar questions