Math, asked by PragyaTbia, 1 year ago

If A =  \left[\begin{array}{ccc}2&1\\5&0\\-1&4\end{array}\right] and B =  \left[\begin{array}{ccc}-2&3&1\\4&0&2\end{array}\right] then find 2A + B' and 3B' - A.

Answers

Answered by hukam0685
0

Answer:

2A+B^{'}=\left[\begin{array}{ccc}2&6\\13&0\\-1&10\end{array}\right]

3B^{'}-A=\left[\begin{array}{ccc}-8&11\\4&0\\4&2\end{array}\right]

Step-by-step explanation:

if

A =\left[\begin{array}{ccc}2&1\\5&0\\-1&4\end{array}\right]\\

B =\left[\begin{array}{ccc}-2&3&1\\4&0&2\end{array}\right]\\

2A =\left[\begin{array}{ccc}4&2\\10&0\\-2&8\end{array}\right]\\

B^{'} =\left[\begin{array}{ccc}-2&4\\3&0\\1&2\end{array}\right]\\

2A+B^{'} =\left[\begin{array}{ccc}4&2\\10&0\\-2&8\end{array}\right]+\left[\begin{array}{ccc}-2&4\\3&0\\1&2\end{array}\right]\\\\\\=\left[\begin{array}{ccc}4-2&2+4\\10+3&0+0\\-2+1&8+2\end{array}\right]\\\\\\2A+B^{'}=\left[\begin{array}{ccc}2&6\\13&0\\-1&10\end{array}\right]\\

3B^{'}-A =\left[\begin{array}{ccc}-6&12\\9&0\\3&6\end{array}\right]-\left[\begin{array}{ccc}2&1\\5&0\\-1&4\end{array}\right]\\\\\\=\left[\begin{array}{ccc}-6-2&12-1\\9-5&0-0\\3+1&6-4\end{array}\right]\\\\\\3B^{'}-A=\left[\begin{array}{ccc}-8&11\\4&0\\4&2\end{array}\right]


Similar questions