Math, asked by PragyaTbia, 1 year ago

If A =  \left[\begin{array}{ccc}7&-2\\-1&2\\5&3\end{array}\right] and B =  \left[\begin{array}{ccc}-2&-1\\4&2\\-1&0\end{array}\right] then find AB' and BA'.

Answers

Answered by hukam0685
1

Answer:

BA'=\left[\begin{array}{ccc}-12&0&-13\\24&0&26\\-7&1&-5\end{array}\right]\\\\

AB'= \left[\begin{array}{ccc}-12&24&-7\\0&0&1\\-13&26&-5\end{array}\right]\\\\


Step-by-step explanation:

if

 A = \left[\begin{array}{ccc}7&-2\\-1&2\\5&3\end{array}\right]\\

 B = \left[\begin{array}{ccc}-2&-1\\4&2\\-1&0\end{array}\right]\\

 A^{'} =\left[\begin{array}{ccc}7&-1&5\\-2&2&3\end{array}\right]\\

 B^{'} =\left[\begin{array}{ccc}-2&4&-1\\-1&2&0\end{array}\right]\\

then to find

AB'=\left[\begin{array}{ccc}7&-2\\-1&2\\5&3\end{array}\right]_{3\times 2}\times\left[\begin{array}{ccc}-2&4&-1\\-1&2&0\end{array}\right]_{2\times 3}\\\\\\=\left[\begin{array}{ccc}7(-2)+(-2)(-1)&7(4)+(-2)(2)&7(-1)+(-2)(0)\\-1(-2)+2(-1)&(-1)4+-1(-1)&5(-1)+3(0)\\5(-2)+3(-1)&5(4)+3(2)&5(-1)+3(0)\end{array}\right]_{3\times 3}\\\\\\AB'= \left[\begin{array}{ccc}-12&24&-7\\0&0&1\\-13&26&-5\end{array}\right]\\\\

and for BA'

BA'=\left[\begin{array}{ccc}-2&-1\\4&2\\-1&0\end{array}\right]\times\left[\begin{array}{ccc}7&-1&5\\-2&2&3\end{array}\right]\\\\\\BA'=\left[\begin{array}{ccc}-12&0&-13\\24&0&26\\-7&1&-5\end{array}\right]\\\\


Similar questions