Math, asked by PragyaTbia, 1 year ago

If A =  \left[\begin{array}{ccc}cos\alpha&sin\alpha\\-sin\alpha&cos\alpha\end{array}\right], show that AA' = A'A = I.

Answers

Answered by hukam0685
2

Answer:

AA' = A'A = I

Step-by-step explanation:

If

A =\left[\begin{array}{ccc}cos\alpha&sin\alpha\\-sin\alpha&cos\alpha\end{array}\right]\\\\\\

A^{'} =\left[\begin{array}{ccc}cos\alpha&-sin\alpha\\sin\alpha&cos\alpha\end{array}\right]\\\\\\

To show that AA' = A'A = I

A.A^{'} =\left[\begin{array}{ccc}cos\alpha&sin\alpha\\-sin\alpha&cos\alpha\end{array}\right]\times\left[\begin{array}{ccc}cos\alpha&-sin\alpha\\sin\alpha&cos\alpha\end{array}\right]\\\\\\=\left[\begin{array}{ccc}cos^{2}\alpha+sin^{2}\alpha&sin\alpha\:cos\alpha-sin\alpha\:cos\alpha\\sin\alpha\:cos\alpha-sin\alpha\:cos\alpha&cos^{2}\alpha+sin^{2}\alpha\end{array}\right]\\\\\\=\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]\\\\A.A^{'}=I\\\\

A^{'}.A =\left[\begin{array}{ccc}cos\alpha&-sin\alpha\\sin\alpha&cos\alpha\end{array}\right]\times \left[\begin{array}{ccc}cos\alpha&sin\alpha\\-sin\alpha&cos\alpha\end{array}\right]\\\\\\=\left[\begin{array}{ccc}cos^{2}\alpha+sin^{2}\alpha&sin\alpha\:cos\alpha-sin\alpha\:cos\alpha\\sin\alpha\:cos\alpha-sin\alpha\:cos\alpha&cos^{2}\alpha+sin^{2}\alpha\end{array}\right]\\\\\\=\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]\\\\\\A^{'}.A=I\\

so AA' = A'A = I


Similar questions