If a =
and b =
Then find
Answers
Answered by
0
I=∫(tanx−−−−√+cotx−−−−√)dx
I=∫(tanx+cotx)dx
=∫sinx+cosxsinxcosx−−−−−−−−√dx
=∫sinx+cosxsinxcosxdx
Putting sinx−cosx=u,sinx−cosx=u, du=(cosx+sinx)dx,u2=1−2sinxcosx,sinxcosx=u2−12du=(cosx+sinx)dx,u2=1−2sinxcosx,sinxcosx=u2−12
I=∫2–√du1−u2−−−−−√=2–√arcsinu+C=2–√arcsin(sinx−cosx)+C
I=∫2du1−u2=2arcsinu+C=2arcsin(sinx−cosx)+C
where CC is an arbitrary constant for indefinite integral.
I=∫(tanx+cotx)dx
=∫sinx+cosxsinxcosx−−−−−−−−√dx
=∫sinx+cosxsinxcosxdx
Putting sinx−cosx=u,sinx−cosx=u, du=(cosx+sinx)dx,u2=1−2sinxcosx,sinxcosx=u2−12du=(cosx+sinx)dx,u2=1−2sinxcosx,sinxcosx=u2−12
I=∫2–√du1−u2−−−−−√=2–√arcsinu+C=2–√arcsin(sinx−cosx)+C
I=∫2du1−u2=2arcsinu+C=2arcsin(sinx−cosx)+C
where CC is an arbitrary constant for indefinite integral.
Similar questions