Math, asked by IAMINSANE, 1 year ago

If a =
 \sqrt{10}   +   \sqrt{5}
and b =
 \sqrt{10 }    -   \sqrt{5}
Then find
( \sqrt{a}  -  \sqrt{b} ) \div  (\sqrt{10}  -  \sqrt{5} ) - (2 \sqrt{ab} ) \div  (\sqrt{10}  +  \sqrt{5} )

Answers

Answered by mostafizur63
0
I=∫(tanx−−−−√+cotx−−−−√)dx
I=∫(tan⁡x+cot⁡x)dx
=∫sinx+cosxsinxcosx−−−−−−−−√dx
=∫sin⁡x+cos⁡xsin⁡xcos⁡xdx
Putting sinx−cosx=u,sin⁡x−cos⁡x=u, du=(cosx+sinx)dx,u2=1−2sinxcosx,sinxcosx=u2−12du=(cos⁡x+sin⁡x)dx,u2=1−2sin⁡xcos⁡x,sin⁡xcos⁡x=u2−12

I=∫2–√du1−u2−−−−−√=2–√arcsinu+C=2–√arcsin(sinx−cosx)+C
I=∫2du1−u2=2arcsin⁡u+C=2arcsin⁡(sin⁡x−cos⁡x)+C
where CC is an arbitrary constant for indefinite integral.
Similar questions