Math, asked by mushtaqnajar6795, 1 year ago

If a triangle abc (1+a/b+c/b)(1+b/c-c/b)=3 then the angle a is equal to

Answers

Answered by mersalkeerthi46
0

Answer:


Step-by-step explanation:

Try this formula to prove reverse  

a^2 = b^2 + c^2 − 2bc Cos A  

b^2 = c^2 + a^2 − 2ca Cos B  

c^2 = a^2 + b^2 − 2ab Cos C  

u know the angle of C = 60  

So c^2 = a^2 + b^2 − 2ab cosC  

=> c^2 = a^2 + b^2 − 2ab cos 60 => c^2 = a^2 + b^2 − ab  

Simplify  

1/(a+c) + 1/(b+c) = 3 / ( a+b+c )  

=> (a+b+2c) / (a+c) (b+c) = 3 / (a+b+c)  

=> (a+b+2c) (a+b+c) = 3(a+c) (b+c)  

=> a^2 + b^2 + 2ab + 2c^2 + 3ac + 3bc = 3ab + 3ac + 3bc + 3c^2  

=> a^2 + b^2 + 2ab - 3ab = 3 c^2 - 2 c^2 (cancel 3ac & 3bc)  

=> a^2 + b^2 – ab = c^2  

so both matched hence the proof

Similar questions