Physics, asked by YogeshwarYadav, 1 year ago

If A vector is equals to 3 iCAP + 4 j cap and B vector equals to icap + J cap + 2 K cap then find out unit vector along a vector A+ Bvector

Answers

Answered by gracydhruti
14
(4iCAP+5Jcap+2kcap)/root45

Answered by lidaralbany
32

Answer:

The unit vector along a A+B is \hat{C}=\dfrac{4}{\sqrt{45}}\hat{i}+\dfrac{5}{\sqrt{45}}\hat{j}+\dfrac{2}{\sqrt{45}}\hat{k}

Explanation:

Given that,

Vector \vec{A} =3\hat{i}+4\hat{j}

Vector \vec{B} =\hat{i}+\hat{j}+2\hat{k}

The vector A+B is

\vec{A+B}=\vec{C}=3\hat{i}+4\hat{j}+\hat{i}+\hat{j}+2\hat{k}

\vec{C}=4\hat{i}+5\hat{j}+2\hat{k}

Now, the magnitude of A+B

|\vec{C}|=\sqrt{4^2+5^2+2^2}

|\vec{C}|=\sqrt{45}

The unit vector along a A+B is

\hat{C}=\dfrac{\vec{C}}{|\vec{C}|}

\hat{C}=\dfrac{4\hat{i}+5\hat{j}+2\hat{k}}{\sqrt{45}}

\hat{C}=\dfrac{4}{\sqrt{45}}\hat{i}+\dfrac{5}{\sqrt{45}}\hat{j}+\dfrac{2}{\sqrt{45}}\hat{k}

Hence, The unit vector along a A+B is \hat{C}=\dfrac{4}{\sqrt{45}}\hat{i}+\dfrac{5}{\sqrt{45}}\hat{j}+\dfrac{2}{\sqrt{45}}\hat{k}

Similar questions