Math, asked by nikitapal3387, 20 hours ago

if a^x=b^y=c^z, b^2=ac and 1/x+1/z=a/2 then a=?

Answers

Answered by vikkiain
1

a =  \frac{4}{y}

Step-by-step explanation:

Given, \:  \:  \:  a^x=b^y=c^z, \:  \:  \: and \:  \:  \:  b^2=ac \\ Let, \:  \:  \: a^x=b^y=c^z = k \\ then, \:  \:  \: a =  {k}^{ \frac{1}{x} } , \:  \: b =  {k}^{ \frac{1}{y} }  \:  \:  \: and \:  \:  \: c =  {k}^{ \frac{1}{z} }  \\ Now, \:  \:  \:  {b}^{2}  = ac \\ putting \:  \: values \\ ( {k}^{ \frac{1}{y} } )^{2}  =  {k}^{ \frac{1}{x} }  \times  {k}^{ \frac{1}{z} }  \\  {k}^{ \frac{2}{y} }  =  {k}^{ \frac{1}{x} +  \frac{1}{z}  }  \\  \frac{2}{y} =  \frac{1}{x} +  \frac{1}{z}  \\ given, \:  \:  \: \frac{1}{x} +  \frac{1}{z}  =  \frac{a}{2}  \\ So, \:  \:  \frac{2}{y}  =  \frac{a}{2}  \\  \:  \:  \:  \:  \:  \:  \:  \: a =  \frac{2}{y} \times 2 \\ a =   \boxed{\frac{4}{y} }

Similar questions