Math, asked by Shubhamjagtap4826, 1 year ago

If a=x/x+y and b=x/x-y, then ab/a+b is what

Answers

Answered by DhanyaDA
17

ANSWER:-

given \: a =  \frac{x}{x + y}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: b =  \frac{x}{x - y}

REQUIRED TO FIND :

\Huge \bf \frac {ab}{a+b}

METHOD:

let us find both ab and a+b separately

ab =  \frac{x}{x + y}  \times  \frac{x}{x - y}

 \Huge \bf {\underline{(x+y)(x-y)=x^2-y^2}}

using the identity

ab =  \frac{ {x}^{2} }{ {x}^{2} -  {y}^{2}  }

let us

now find a+b

a + b =  \frac{x}{x + y}  +  \frac{x}{x - y}

a + b =  \frac{ {x}^{2} - yx +  {x}^{2} + yx  }{ {x}^{2} -  {y}^{2}  }

 =  \frac{2 {x}^{2} }{ {x}^{2} -  {y}^{2}  }

now the value of ab/a+b is

 \frac{ab}{a + b}  =  \frac{ \frac{ {x}^{2} }{ {x}^{2} -  {y}^{2}  } }{ \frac{2 {x}^{2} }{ {x}^{2} -  {y}^{2}  } }

 =  \frac{ {x}^{2} }{ {x}^{2} -  {y}^{2}  }  \times  \frac{ {x}^{2} -  {y}^{2}  }{2 {x}^{2} }

 =  \frac{1}{2}

so \:the \:value \:of \: \frac {ab}{a+b} \: is

\Huge \bf {\underline{\frac{1}{2}}}

IDENTITY USED:

(a+b)(a-b)=a^2-b^2

Answered by bhagvanchoudary39
0

Answer:

gt tgybmumu

Step-by-step explanation:

gf is very g yb hcxkgxgipjckgckvhhggsfd,jltdtcyocyocug

Similar questions