if a1 a2 a3 a4 are positive real numbers such that a1 + a2 + a3 + a4 = 16 then find maximum value of (a1 + a2)(a3 + a4)
Answers
Maximum value can be obtained when a1=a2=a3=a4 =k (assume)
Now, 4k=16
This implies k=4
Now max value= (4+4)*(4+4) =64
Answer:
64
Step-by-step explanation:
Given that ,
If a1 a2 a3 a4 are positive real numbers such that a1 + a2 + a3 + a4 = 16 than find maximum value of ( a1 + a2 ) ( a3 + a4 ).
So,
as per given condition.
a1 + a2 + a3 + a4 = 16
And
( a1 + a2 ) ( a3 + a4 )
Now,
we have to focus only on the terms
( a1 + a2 ) and ( a3 + a4 ).
here are two condition that ,
multiply of ( a1 + a2 ) and ( a3 + a4 ) is maximum
and sum of a1, a2, a3, and a4 = 16.
Here take a example ,
a) 1 × 7 = 7 , 1 + 7 = 8
b) 2 × 6 = 12 , 2 + 6 = 8
c) 3 × 5 = 15 , 3 + 5 = 8
d) 4 × 4 = 16 , 4 + 4 = 8
From the above example we can conclude that ,
the multiply of number which is equal in their number have heigher multiple value.
So,
taking a1 = a2 = a3 = a4.
a1 + a2 + a3 + a4 = 16
a1 + a1 + a1 + a1 = 16
4a1 = 16
a1 = 4.
Now every value is 4.
Then the maximum value of the expression
( a1 + a2 ) ( a3 + a4 ).
= ( 4 + 4 ) ( 4 + 4 )
= 8 × 8
= 64.
Therefore, the heighest value of ( a1 + a2 ) ( a3 + a4 ) is 64.
THANKS.
#SPJ2.
https://brainly.in/question/35296047