Social Sciences, asked by mnavneeth4479, 1 year ago

If a² + (1/a²) = 23 and a ≠ 0, find the value of a³ + (1/a³)

Answers

Answered by SushmitaAhluwalia
2

The value of a^{3}+\frac{1}{a^{3} } is 110

  • Given

              a^{2}+\frac{1}{a^{2} }=23

  • We know that

            (a+b)^{2}=a^{2}+b^{2}+2ab\\(a+\frac{1}{a})^{2}=a^{2}+\frac{1}{a^{2} } +2\\(a+\frac{1}{a})^{2}=23+2\\(a+\frac{1}{a})^{2}=25\\a+\frac{1}{a}=5\\Now,\\a^{3}+\frac{1}{a^{3}}=(a+\frac{1}{a})(a^{2} +\frac{1}{a^{2} }-a(\frac{1}{a}))\\ a^{3}+\frac{1}{a^{3}}=(5)(23-1)\\a^{3}+\frac{1}{a^{3}}=5(22)\\a^{3}+\frac{1}{a^{3}}=110

Answered by vilnius
1

a³ +  \frac{1}{a^{3} } = 110

Explanation:

Given,

a^{2} + \frac{1}{a^{2} } = 23

Applying the formula: (a + b)² = a² + b² + 2ab

a² + b² =  (a + b)² - 2ab

Putting the given value:

23 = (a + \frac{1}{a})² - 2 × a ×  \frac{1}{a}

23 = (a + \frac{1}{a})² - 2

23 + 2 = (a + \frac{1}{a}

(a + \frac{1}{a}) = \sqrt{25}

(a + \frac{1}{a}) = 5

To find: a³ + \frac{1}{a^{3} }

Applying the formula: (a + b)³ = a³ + b³ + 3a²b + 3ab²

(a + \frac{1}{a})³ = a³ +  \frac{1}{a^{3} } + 3 × a² ×  \frac{1}{a} + 3 × a ×  \frac{1}{a^{2} }

(5)³ = a³ +  \frac{1}{a^{3} } + 3a + \frac{3}{a}

125 = a³ +  \frac{1}{a^{3} } + 3 (a + \frac{1}{a})

125 = a³ +  \frac{1}{a^{3} } + 3 (5)

125 = a³ +  \frac{1}{a^{3} } + 15

a³ +  \frac{1}{a^{3} } = 125 - 15

a³ +  \frac{1}{a^{3} } = 110

Learn more:

Factorise the following

brainly.in/question/6734488

brainly.in/question/12938195

Similar questions