Math, asked by bhumikakalyani0, 10 months ago

If a²+ 1/a² = 47 and a≠ 0 find a³ + 1/a³​

Answers

Answered by kailashmeena123rm
36

Answer:

see attachment

Step-by-step explanation:

MARK ME AS BRAINLIEST

PLEASE

Attachments:
Answered by sandy1816
0

given

 {a}^{2}  +  \frac{1}{ {a}^{2} }  = 47 \\

adding 2 both sides

 {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2 = 49 \\  \\ ( {a +  \frac{1}{a} })^{2}  = 49 \\  \\ a +  \frac{1}{a}  = 7

cubing both sides

( {a +  \frac{1}{a} })^{3}  =  {7}^{3}  \\  \\  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3.a. \frac{1}{a} (a +  \frac{1}{a} ) = 343 \\  \\  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3 \times 7 = 343 \\  \\  {a}^{3}  +  \frac{1}{ {a}^{3} }  = 343 - 21 \\  \\  {a}^{3}  +  \frac{1}{ {a}^{3} }  = 322

Similar questions