if a2 +1/a2=7 find a3+1/a3
Answers
Answer:
Step-by-step explanation:
a² + 1/a² = 7, a³ + 1/a³ = ?
=> a² + 1/a² = (a + 1/a)² - 2
=> 7 = (a + 1/a)² - 2
=> (a + 1/a)² = 9
=> a + 1/a = ±3.
i.e. a + 1/a = +3 or a + 1/a = -3
We know that (a + b)³ = a³ + b³ + 3ab(a+b) i.e. a³ + b³ = (a + b)³ - 3ab(a+b)
So, Let us first consider a + 1/a = 3
a³ + 1/a³ = (a + 1/a)³ - 3(a)(1/a)(a+1/a)
= 3³ - 3 (3)
= 27 - 9
= 18.
Let us first consider a + 1/a = -3
a³ + 1/a³ = (a + 1/a)³ - 3(a)(1/a)(a+1/a)
= (-3)³ - 3 (-3)
= -27 + 9
= -18.
given
a² + 1/a² =7
a² + 1/a² + 2 = 7+2 ( adding 2 both sides)
(a + 1/a)² = 9
a + 1/a = ± 3
so a + 1/a=3 --------(1)
& a + 1/a= -3 ---------(2)
Cubing both sides in equation (1) we get
( a+ 1/a)³ = 27
a³ + 1/a³ +3(a+1/a) = 27
a³ + 1/a³ +3×3 = 27 [ since a + 1/a =3]
a³ + 1/a³ =18
And cubing both sides equation (2)
(a+1/a)³ = -27
a³ + 1/a³ + 3(a+1/a) = -27
a³ + 1/a³ +3(-3) = -27 [since a+1/a= -3]
a³ + 1/a³ -9 = -27
a³ + 1/a³ = -27+9
a³ + 1/a³ = -18