if a² + 2b = 7, b² + 4c = -7 and c² + 6a = -14, find a² + b² + c².
Snaky:
Interesting....
Answers
Answered by
50
a^2+2b=7,b^2+4c=-7,c^2+6a=-14
addding all the three equations;we get
a^2+b^2+c^2+6a+4b+2c=7-7-14
a^2+b^2+c^2+6a+4b+2c=-14
a^2+b^2+c^2+6a+4b+2c+14=0
we can write this as;
a^2+6a+9+b^2+2b+1+c^2+4c+4=0
(a+3)^2+(b+1)^2+(c+2)^2=0
Hence;
a+3=0,a=-3
b+1=0,b=-1
c+2=0,c=-2
therefore,a^2+b^2+c^2=(-3)^2+(-1)^2+(-2)^2
=9+1+4
=14....
a^2+b^2+c^2=14
addding all the three equations;we get
a^2+b^2+c^2+6a+4b+2c=7-7-14
a^2+b^2+c^2+6a+4b+2c=-14
a^2+b^2+c^2+6a+4b+2c+14=0
we can write this as;
a^2+6a+9+b^2+2b+1+c^2+4c+4=0
(a+3)^2+(b+1)^2+(c+2)^2=0
Hence;
a+3=0,a=-3
b+1=0,b=-1
c+2=0,c=-2
therefore,a^2+b^2+c^2=(-3)^2+(-1)^2+(-2)^2
=9+1+4
=14....
a^2+b^2+c^2=14
Answered by
3
Hii
Here is your answer -
we have to find the value of a² + b² + c²
Solution :
a² + 2b = 7
a² = 7 - 2b ....(1)
b² + 4c = -7
b² = -7 - 4c ....(2)
c² + 6a = -14
c² = -14 - 6a ....(3)
Substituting value of a² ,b² and c² in a² + b² + c²
a² + b² + c² = 7 - 2b - 7 - 4c - 14 - 6a
a² + b² + c² = - 6a - 2b - 4c - 14
a² + b² + c² = - 2(3a + b + 2c + 7)
value of a² + b² + c² is -2(3a + b + 2c + 7)
━━━━━━━━━━━━━━━━━━━━━━━━
Similar questions
Math,
8 months ago
English,
8 months ago
Social Sciences,
1 year ago
Chemistry,
1 year ago
Math,
1 year ago