Math, asked by nageshbelgaonkar, 10 months ago

if (a2-4a-1)=0 find the values of a+1/a​

Answers

Answered by kushalvarma
2

Answer:

the values are (7+4√5)2+√5 and (7-4√5)/2-√5

Step-by-step explanation:

so the given equation is a quadratic and it has roots :

  (4±√16+4)/2              [USING QUADRATIC FORMULA]

2±√5 are the values of a

so taking a=2+√5 first a+1/a is

2+√5+1/(2+√5)=(2+5+4√5)/2+√5 which gives us

(7+4√5)2+√5

now taking a=2-√5 we get a+1/a as

2-√5+1/(2-√5)=(2+5-4√5)/2-√5 which gives us

(7-4√5)/2-√5

I REALLY HOPE THIS HELPS YOU

Answered by DakshMaahor
2

Answer:

 {a}^{2}  - 4a - 1 = 0

 {a}^{2}  - 4a = 1

 {a}^{2}  - 4a + 4 = 1 + 4 = 5

 {(a - 2)}^{2}  = 5

a - 2 =  \sqrt{5}

a = 2 +  \sqrt{5}

a +  \frac{1}{a}

(2 +  \sqrt{5} ) +  \frac{1}{(2 +  \sqrt{5}) }

 \frac{ {(2 +  \sqrt{5}) }^{2} + 1 }{2 +  \sqrt{5} }

 \frac{4 + 5 + 4 \sqrt{5} + 1 }{2 +  \sqrt{5} }

 \frac{10 + 4 \sqrt{5} }{2 +  \sqrt{5} }

 \frac{(10 + 4 \sqrt{5})(2 -  \sqrt{5})  }{(2 +  \sqrt{5})(2 -  \sqrt{5})  }

 \frac{20 - 10 \sqrt{5} + 8 \sqrt{5} - 20  }{4 - 5}

 \frac{ - 2 \sqrt{5} }{ - 1}

2 \sqrt{5}

Similar questions